Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands.

نویسندگان

  • N S Scrutton
  • A R Raine
چکیده

Cation-pi bonds and amino-aromatic interactions are known to be important contributors to protein architecture and stability, and their role in ligand-protein interactions has also been reported. Many biologically active amines contain substituted ammonium moieties, and cation-pi bonding and amino-aromatic interactions often enable these molecules to associate with proteins. The role of organic cation-pi bonding and amino-aromatic interactions in the recognition of small-molecule amines and peptides by proteins is an important topic for those involved in structure-based drug design, and although the number of structures determined for proteins displaying these interactions is small, general features are beginning to emerge. This review explores the role of cation-pi bonding and amino-aromatic interactions in the biological molecular recognition of amine ligands. Perspectives on the design of ammonium-ligand-binding sites are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cation-pi interactions involving aromatic amino acids.

The cation-pi interaction is a general, strong, noncovalent binding force that is used throughout nature. The side chains of the aromatic amino acids [phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp)] provide a surface of negative electrostatic potential than can bind to a wide range of cations through a predominantly electrostatic interaction. In this brief overview, the fundamental n...

متن کامل

From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor.

The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation-pi interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions...

متن کامل

Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide.

The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical hetero...

متن کامل

Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the bin...

متن کامل

Enantiomeric recognition of chiral ammonium salts by chiral pyridino- and pyrimidino-18-crown-6 ligands: Effect of structure and solvents

Chiral pyridino18-crown-6 ligands interact with chiral primary organic ammonium salts by hydrogen bonding from the ammonium cation to the pyridino nitrogen and two alternate ring oxygen atoms. Enantiomeric recognition in these interactions are caused by the steric bulk of the substituents at chiral macrocycle ring positions. Recognition is best for the interaction of chiral pyridino-18-crown6 h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 319 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996